
Web Guide

What is a rule (style)?
A CSS formatting rule (also called
a style) consists of two parts—the
selector and the declaration.

The selector is a term or name
(such as P, H1, a class name, or an
id) that identifies the formatted
element, and the declaration
defines what the style elements
are (called the properties of the style like font-size above).

In the example above, H1 (which is an html tag that means “apply a headline size
1 here”) is the selector, and everything that falls between the braces ({}) is the
declaration.

H1 {
 font-size: 12px;
 font-family: helvetica, arial, sans-serif;
 font-weight: bold;
 }

Understanding CSS
Let’s say you want to create a headline with certain text formatting. Now,
suppose you want to apply those characteristics to many headlines. It would be
advantageous to be able to save the formatting and then apply it wherever you
want that formatting, wouldn’t it? Well, that’s how a style sheet works. You create
formatting once, save it as a style (also called a rule) in a text file called a style
sheet, and then you apply it wherever and whenever you want on a web page.

CSS or Cascading Style Sheets are just like the style sheets you may use in a page
layout application such as InDesign, QuarkXPress, or even Microsoft Word. Since
style sheets are for the web, you get the HTML curve, which adds a little spin on
the style sheet of the print world. Style sheets are an amazing tool for controlling
your document, keeping file size down (by limiting redundancies), and updating
quickly and easily.

Web page with CSS styling Web page without CSS styling

You must understand that style sheets affect much more than just text. Style sheets
have many applications from changing the color of text in a paragraph to tracking the
position of a layer.

Style Types
There are three types of styles on the web that each have different purposes:

1. Tags: Change the formatting for predefined HTML tags such as the <p>
(paragraph), <h1>–<h6> (headline tags), <a> (anchor tags) and others. The
only problem with these is that they change everything within those tags to
match the formatting you defined for it. A tag style is just the name of the
html tag you are redefining.
Example: body

2. Classes: Apply styles to sections of text or other objects, by employing the
 tag in one instance. A class style name can be almost anything you
like, but it’s name needs to start with a period (.)
Example: .redtext

3. IDs: IDs are to be used only once on your page and are usually (not always)
employed by <div> tags to indicate position and size. An ID style name can
be almost anything you like, but it’s name needs to start with a pound sign
(#). Example: #header

Tag styles defined in most style sheets to start
Everyone creates base styles for the more common formatting on your pages.
Common style properties set for these tags:

<body> : background color of page (optional), background image for page
(optional), font family, font size, margin=0, padding=0

<p> : font color (optional), line height (optional)

<h1> - <h6> : font size, font family (optional), font color (optional)

a: link : no underline (text-
decoration), color

a: visited : no underline
(optional), color

a: hover : no underline
(optional), color

a: active : no underline
(optional), color

There are four “states” to your links
(that’s why there are 4 styles):

1. A:link is what your text links look
like before users click on them.

2. A:visited is what your links look
like after visitors have clicked.

3. A:hover is what the link looks like
after a user hovers over the link
with the cursor.

4. A:active is the appearance of the
last selected link.

arrive smart. leave smarter.™

External Linking
Main.css

The CSS document at left is a separate
document from any of your html documents.
All that is required to make one is to type the
definitions (as you can see one at left), and give
the document a name and .css extension. You
can then link any of your html docs to the CSS
document to pick up the formatting.

You will learn in the next few pages how to link
to an external CSS file.

p {
 color: blue;
 }

Main Body Text Main Body Text

Main.css

Index.html
(Page one)

links.html
(Page two)

Link to
Main.css

Link to
Main.css

At left you see one way to apply styling using
a linked style sheet. The page at top is a style
sheet file named main.css that contains all the
formatting definitions.

1. For instance: p { color: blue } -- this tells
the browser that all the paragraphs that
use this style sheet should have a color
of blue.

2. Since all these documents are sent up to
the server, you link from the html pages
to the Main.css.

3. The browser sees the link in the head
section and follows it to read the
definition for the <p> (paragraph) tag in
this case whenever it sees the <p> tag in
the body!

4. The great thing about creating an
external style sheet, is that if you change
the definition in Main.css, all the pages
that are linked to it are automatically
changed also.

Where styles live
In Dreamweaver there are 3 places that your styles can reside: inline, internal, and
external. Below each is defined.

1. Inline styling: Any style information is
directly attached to the HTML elements
they affect.

•	 You use the tags to tell
the browser that the formatting
(indicated by the “style” attribute)
needs to span across this text (so
between the opening and closing
span tags), in this case.

•	 All inline styles only apply to a single
html document and usually only
applies to a specified portion of that
document.

2. Internal styling: These styles are
specific to a single page. For instance,
suppose you create some formatting for
all your paragraphs (<p> tags found in
the html). The formatting definition (the
style) can be written in the head section
of the html page so that only that page
can use the formatting.

•	 THIS DOCUMENT IS THE ONLY
ONE THAT CAN USE THIS STYLE
DEFINITION!

•	 You are telling the browser to make
the text red every time it sees a <p>
(paragraph).

•	 Down in the body you can see a <p> tag, so the text “Main body text” will
appear red in the browser.

3. External styling: Formatting (CSS styles) are written in a separate text file
called a Cascading Style Sheet (.css file). The html pages are linked to the
CSS file using the Link tag placed in the head section which directly links to
the style sheet. This way you can create the style sheet externally and apply
it to as many pages in your web site as you like. See the next page for more
information on external linking to styles.

<html>
 <head>

 </head>

 <body>
 <p><span
style=”color:red”>Main Body
text</p>
 </body>
</html>

<html>
 <head>
 <style type=”text/css”>
 <!--
 p {color:red; }
 -->
 </style>
 </head>

 <body>
 <p>Main Body text</p>
 </body>
</html>

arrive smart. leave smarter.™

Tables for layout
In order to create a web page,
designers used to rely on tables
to control the layout of the page.
Tables were like working in
Microsoft Excel, or working with
tables in a program like InDesign.
The table was there to provide a structure with rows, columns, and cells to keep
things in place and separate.

Tables are difficult to work with and went the way of the Dodo for layout when
more and more browsers began to support divs and CSS for the layout of the
page. Tables are still very useful today for holding data like a product table or a
calendar, but they are no longer used for the entire layout structure of the page.

Web Safe colors
In HTML, a web-safe color is one that appears on
both Windows and Mac OS systems with an older
monitor that can only display 256 colors. There are
216 colors that work on Mac OS and Windows with
older monitors. These days, web safe colors are
not used nearly as much anymore because newer
monitors can support many more colors.

So what does that mean to the average print
designer switching to the web? Use whatever colors you want, EXCEPT for spot
colors. Also, make sure that you work in RGB colors, since that is what the web also
understands. If you run across a color on a web page and you see something like
this: #39ae0c, that’s called a hexadecimal color)or hex color for short). That’s how
you express a web color in html terms.

#FF0000

R G B

Web Font Families
Font families on the web are a bit different than those you can choose for print
work. The thing to remember is that the end user that looks at a web page need to
have the font you choose installed on their machine.

Why do the font families appear in comma separated order?
For example: Verdana, Geneva, sans-serif.

We give browsers options when it comes to picking font families. The first font that
appears in the list “Verdana” is tried first. If the person looking at your page don’t
have that font, the browser tries to find Geneva, and so on. So the order of the font
families is really important. What re some good fonts for the web?

Verdana and Trebuchet are sans-serifs that were designed for the web and have
a high x-height for readability.

Understanding divs
The basic building block of the CSS layout is the <div> tag—an HTML tag that
in most cases acts as a container for text, images, and other page elements. The
following example shows an HTML page that contains five separate div tags for
four areas of the page: a wrapper div to contain all of the other divs, a header div
tag, a sidebar div tag, a maincontent div tag, and a footer div tag.

1. A <div> by default is as wide as the browser window. It is referred to as a
relative width. It’s width is relative to the width of it’s container (the browser
window in this case).

2. A <div> by default is as tall as it’s content.

3. Div’s stack on each other like building blocks. They can’t go next to each other
unless forced.

div with Header style applied

div with wrapper style applied

div with footer style applied

div with
sidebar style
applied div with maincontent style applied

The Box Model
For display purposes, every element in a document is considered to be a
rectangular box which has a content area surrounded by padding, border and
margins. The illustration below shows these various parts. Margins are always
transparent. Borders come in various styles.

Margins, borders and padding are all optional but for purposes of calculating
positions and sizes they are given a default width of zero if not specified. Different
widths can be set for each individual side (top, right, bottom and left) if desired.

The width of a div (box)=left border+left padding+value typed in width
property+right padding+right border

The height of a div (box)=top border+top padding+value typed in height
property+bottom padding+bottom border

Content of box is here
Margin

Border

Padding

Content

Working with Floats
In order to create columns on a web page, most people will “float” divs to put
them next to each other. You can float lots of elements like images (),
paragraphs (<p></p>), divs (<div></div>), and lists ().

You can float elements to the right or the left. Any element that follows the floated
element will flow around the floated element on the other side.

For example, if you float an image to the left, any text or other elements following
it will flow around it to the right. See the example below. And if you float an image
to the right, any text or other elements following it will flow around it to the left.
In the case of the images below, floating is sort of like text wrap or runaround in
print programs (if you’re familiar with that concept). Floating divs is a simple, but
effective way to create columns.

Image placed into some text After float left is applied to the image

A float example

Below is one way to work with two divs to create two columns using a float.

1. Two divs on the page, one on top of the other.

sidebar div

maincontent div

2. Give the top sidebar div a width. The divs stay stacked on each other.

sidebar div

maincontent div

3. Apply a float=left to the sidebar div. This pulls the sidebar div off the page
and the maincontent div slides up where the sidebar div was.

maincontent div

4. The sidebar div is put back in place on top of the maincontent div.

maincontent divsidebar div

maincontent divsidebar div

(front view)

(side view)

5. Push the maincontent div from the left using margin. This pushes it to start
where the sidebar div ends.

maincontent divsidebar div

What actually happens when you float divs?
Here is a rule of thumb for floating divs.

Always float the div closest to the top of the page.

Here’s why: Take a look at the steps on the next page.

1. The div that is floated (the sidebar div) is pulled out of the page leaving a gap
where it was (it’s literally pulled out of the stack of divs and floated on top of
everything on the page, sort of like the top layer in a Photoshop file). Think
of it like a stack of 3 wooden blocks on a table and you were to pull out the
middle one.

2. The maincontent div closed the gap left when the sidebar div was pulled out
of the page (gravity works in reverse on a web page).

3. The sidebar div was then aligned to the left and is now floating on top of the
other divs.

4. The maincontent div is the same width as it was, but it is now underneath the
sidebar div. The odd part is that maincontent div text is wrapped around the
sidebar by default.

5. The maincontent div is pushed using margin from the left to make it look like
two columns next to each other.

arrive smart. leave smarter.™

About the cascade in Cascading Style Sheets
The Cascade in cascading style sheets refers to all of the styles that apply to
content such as the paragraph. Take a look at the text below:

<p>The Cascade in style sheets
refers to all of the styles that apply to content such as the
paragraph.</p>

When you apply formatting to text, for instance, some of the formatting cascades
to other content. In the text above, there are several styles controlling the
formatting:

p { color: black; font-family: verdana; font size: 11px;}
.red { color: red; }

All of the text formatting (color, font size, and font family) in the <p> tag
(paragraph) is controlled by the p style. A style called “red” is applied to the text
“style sheets.” The browser applies the p style first, then the .red style. Whatever
formatting is applied last wins but the formatting is cumulative. The text “style
sheets” has the follow formatting: color:red, font-family: verdana, and font size:
11px.

Media Types
Some CSS properties are only designed for a
certain media. For example the “voice-family”
property is designed for aural user agents. Some
other properties can be used for different media
types. For example, the “font-size” property can
be used for both screen and print media, but
perhaps with different values.

A document usually needs a larger font-size on
a screen than on paper, and sans-serif fonts are
easier to read on the screen, while serif fonts are
easier to read on paper.

An example of a style sheet using the media type:

<link rel=”stylesheet” media=”print” href=”print.
css” type=”text/css”>

Here are the different
media types:

 * all (default)
 * aural
 * braille
 * embossed
 * handheld
 * print
 * projection
 * screen
 * tty
 * tv

Format Properties
Text Properties

font-style: Italic, normal
font-variant: normal, small-caps
font-weight: bold, normal
font-size: Size of the font
font-family: Specific font(s) to be used
letter-spacing: Space between letters
line-height: Vertical distance between baselines
text-align: Horizontal alignment
text-decoration: blink, line-through, none, overline, underline
text-indent: First line indentation
text-transform: capitalize, lowercase, uppercase
vertical-align: Vertical alignment
word-spacing: Spacing between words

Lists

list-style-type: Type of bullet or numbering in the list disc; circle; square;
decimal; lower-roman; upper-roman; lower-alpha; upper-
alpha; none

list-style-position: Position of the bullet or number in a list: inside; outside
list-style-image: Image to be used as the bullet in a list

Background

background-color: Background color
background-image: Background image
background-repeat: repeat, no-repeat, repeat-x, repeat-y
background-attachment: Background image scroll with the element: scroll, fixed
background-position: (x y), top, center, bottom, left, right

Inline vs. block level elements
There are two types of elements in HTML: block-level elements and inline-level
elements. The two types of elements with examples are below:

•	 A block-level element will span the full width of the space it’s inside of, and
so will start on a new line in the flow of HTML. The flow will continue on a
new line after the block-display element.
Examples: divs, paragraphs, headlines, horizontal rules, etc.

•	 Inline-level elements don’t break the flow. They just fit in with the flow of
the document.
Examples: images, links, and text.

arrive smart. leave smarter.™

Common issues everyone faces and their fix

I’ve collected just a few of the tweaky issues you may run across and their fixes.

Removing dotted links

Firefox produces a dotted outline that appears around links when you click on
them. Very annoying, but easy to get rid of. Assign the outline property with a
value of none to the link style.

a {outline: none;}

Centering a fixed width website

To centre your website within the browser, add relative positioning to the outer
div, then set the margin to auto. Older IE versions also needs text-align:center on
the body style. Assign text-align left to #wrapper or other divs.

body {text-align: center}

#wrapper {
 width: 770px;
 margin: 0 auto;
 text-align: left
}

Image replacement technique

It is always best to use text rather than an image for headings. When you need to
have an image it is best to use a background image with hidden text. This is useful
for screen readers and Search Engine Optimization because it is still read as text
since the text is simply pushed (indented) off the page.

HTML (on your page):
<h1>Main heading one</h1>

CSS:
h1 {background: url(some-image.gif) no-repeat;}
h1 span {
 position: absolute;{
 text-indent: -5000px;{
}

Clear default margin and padding (AKA a reset)

If you want to remove all default margin and padding from content, you can
create a “reset” style. An example is below:

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var, b, u, i, center,
dl, dt, dd, ol, ul, li, fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {
 margin: 0;
 padding: 0;
 border: 0;
 outline: 0;
 font-size: 100%;
 vertical-align: baseline;
 background: transparent;
}

Move CSS Rules in Dreamweaver

Ever create CSS rules in the Property Inspector only to find late that they are
internal to one page (in the head tag of that page)? You can select the styles in the
Code view in Dreamweaver, right-click (Windows) or Ctrl-click (Mac OS) on the
style(s) and choose CSS Styles > Move CSS Rules. You can also do this in the CSS
Styles panel if you like. This cuts the styles and places them in a style sheet of
your choice.

Vertical Align with CSS

To achieve vertical-align functionality the right way, make the line-height for your
text the same as its container.
#wrapper {
 width: 530px;
 height: 25px;
 padding: 0px 10px;
}
#wrapper p {
 line-height: 25px;
}

Resources I can’t live without!

CSS Shorthand Cheat Sheet
http://www.leigeber.com/2008/04/css-shorthand-cheat-sheet/

Another CSS Cheat Sheet
http://www.addedbytes.com/cheat-sheets/css-cheat-sheet/

Awesome site for all things CSS
http://css-discuss.incutio.com/

arrive smart. leave smarter.™

